# Chapter 9: Quadratic and Exponential Functions

Q1.

Use a table of values to graph the following functions. State the domain and range.

$\mathit{y}\mathbf{=}{\mathit{x}}^{\mathbf{2}}\mathbf{+}\mathbf{2}\mathit{x}\mathbf{+}\mathbf{5}$

Q1.

Use a table of values to graph the given equation. State the domain and range.

$y={x}^{2}+3x+1$

Q1.

What is the vertex of the parabola graphed below?

$A\text{}\left(2,0\right)\phantom{\rule{0ex}{0ex}}B\text{}\left(0,2\right)\phantom{\rule{0ex}{0ex}}C\text{}\left(-\mathbf{2}\mathbf{,}\mathbf{2}\right)\phantom{\rule{0ex}{0ex}}D\text{}\left(\mathbf{2}\mathbf{,}-\mathbf{2}\right)$

Q1.

Use a table of values to graph each equation.

$y=x+3$

Q1.

State whether the given sentence is true or false. If false, replace the underlined term to make a true sentence.

The __axis of symmetry__ of a quadratic function can be found by using the equation $x=-\frac{b}{2a}$.

Q10.

Solve each equation by graphing. If integral roots cannot be found, estimate the roots to the nearest tenth.

${x}^{2}+8=-6x$

Q10.

State whether the given sentence is true or false. If false, replace the underlined term to make a true sentence.

The graph of the parent function is __translated__ down to form the graph$f\left(x\right)={x}^{2}+5$.

Q10.

Determine whether each trinomial is a perfect square trinomial. Write yes or no. If so, factor it.

${x}^{2}-12x+32$

Q10.

The table shows the total cost of renting a canoe for$n$hours.

Number of Hours $\left(n\right)$ | Rental Cost $\left(c\right)$ |

1 | $15 |

2 | $20 |

3 | $25 |

4 | $30 |

a. Write a function to represent the situation.

b. How much would it cost to rent the canoe for 7 hours?

Q10.

Describe how the graph of each function is related to the graph$\mathit{f}\mathbf{\left(}\mathit{x}\mathbf{\right)}\mathbf{=}{\mathit{x}}^{\mathbf{2}}$.

$\mathit{h}\mathbf{\left(}\mathit{x}\mathbf{\right)}\mathbf{=}\frac{\mathbf{1}}{\mathbf{2}}{\mathit{x}}^{\mathbf{2}}\mathbf{+}\mathbf{4}$