Americas
Europe
Problem 255
Consider the transformation $\mathrm{x}-\mathrm{u}+\mathrm{v} \quad \mathrm{y}=\mathrm{v}-\mathrm{u}^{2}$ Let \(D\) be the set in the \(u-v\) plane bounded by the lines $\mathrm{u}=0, \mathrm{v}=0\(, and \)\mathrm{u}+\mathrm{v}=2$ Find the area of \(\mathrm{D}^{*}\), the image of \(\mathrm{D}\), directly and by a change of variables.
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Find the area of the upper hemisphere of the sphere given by the equation \(x^{2}+y^{2}+z^{2}=3^{2}\).
Let \(\mathrm{S}\) be the surface \(\mathrm{S}=\left[\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=1\right\\}\) and let \(\mathrm{f}\) be the function $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\(. Let \)\nabla \mathrm{f}^{-}$ represent the gradient of \(\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}) .\) Compute the integral $\iint_{\mathrm{S}} \nabla \mathrm{f} \cdot \mathrm{n}^{-} \mathrm{d} \mathrm{A}$.
Compute the integral of the vector field $\mathrm{F}^{\rightarrow}(\mathrm{x}, \mathrm{y}, \mathrm{z})\( \)=\left(\mathrm{y},-\mathrm{x}, \mathrm{z}^{2}\right)$ over the paraboloid \(\mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}\) with \(0 \leq \mathrm{z} \leq 1\)
Find the area of the torus whose parametrization is given by $\mathrm{x}=(\mathrm{R}-\cos \mathrm{v}) \cos \mathrm{u} \quad-\pi \leq \mathrm{u} \leq \pi$ \(\mathrm{y}=(\mathrm{R}-\cos \mathrm{v}) \sin \mathrm{u}\) \(-\pi \leq \mathrm{v} \leq \pi\) \(z=\sin v\) where \(\mathrm{R}>1\).
Verify Stokes's Theorem for $\mathrm{F}^{-}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(3 \mathrm{y},-\mathrm{xz}, \mathrm{yz}^{2}\right)$ where \(\mathrm{S}\) is the surface \(2 \mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}\) bounded by \(\mathrm{z}=2\) and \(\mathrm{C}\) is its boundary.
The first learning app that truly has everything you need to ace your exams in one place.