Americas
Europe
Problem 254
Find \(\iint_{D^{*}} \exp [(x-y) /(x+y)] d x\) dy where \(D^{*}\) is the region bounded by the lines \(\mathrm{x}=0, \mathrm{y}=0\), and \(\mathrm{x}+\mathrm{y}=1\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Find the area of the upper hemisphere of the sphere given by the equation \(x^{2}+y^{2}+z^{2}=3^{2}\).
Let \(\mathrm{S}\) be the surface defined by \(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=1\) and let the unit normal vector function have representations directed away from the origin. Compute the integral of the function $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{a}\( over \)\mathrm{S} .$
Compute the total area of the torus given parametrically by $\mathrm{x}=(\mathrm{a}+\mathrm{b} \cos \varphi) \cos \theta ; \mathrm{y}=(\mathrm{a}+\mathrm{b} \cos \varphi) \sin \theta ; \mathrm{z}=\mathrm{b} \sin \varphi$ \(0
Let $\mathrm{F}^{-}=\left(\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}\right)$ be a vector field that satisfies the following conditions $$ \begin{gathered} \left(\partial \mathrm{F}_{2} / \partial \mathrm{z}\right)=\left(\partial \mathrm{F}_{3} / \partial \mathrm{y}\right) ;\left(\partial \mathrm{F}_{3} / \partial \mathrm{x}\right)=\left(\partial \mathrm{F}_{1} / \partial \mathrm{z}\right) ;\left(\partial \mathrm{F}_{2} / \partial \mathrm{x}\right) \\\ =\left(\partial \mathrm{F}_{1} / \partial \mathrm{y}\right), \end{gathered} $$ on a region bounded by a curve c. (See Fig. 1). Prove, using Stokes's Theorem that \(\int_{\mathrm{C}} \mathrm{F}^{-} \cdot \mathrm{ds}^{-}=0\).
Compute the area of the paraboloid given by the equation \(z=x^{2}+y^{2}\), with \(0 \leq z \leq 2\)
The first learning app that truly has everything you need to ace your exams in one place.