Open in App
Log In Start studying!

Select your language

Suggested languages for you:

Problem 263

Find the integral of the function $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}\( over the surface \)z=x^{2}+y\( with \)x, y$ satisfying the inequalities \(0 \leq x \leq 1\) and \(-1 \leq y \leq 1\)

Problem 264

Let \(\mathrm{S}\) be the hemisphere given by $\mathrm{S}:\left\\{(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mid \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right.$ \(=1, z>0\\}\). Let \(f\) be the function \(f(x, y, z)=x^{2} y^{2} z\). Compute the integral \(\iint_{\mathrm{S}} \mathrm{f} \mathrm{d} \mathrm{A}\).

Problem 265

Integrate the function \(z\) over the surface \(z=x^{2}+y^{2}\) with $x^{2}+y^{2} \leq 1$

Problem 266

Compute the integral of the vector field $\mathrm{F}^{\rightarrow}(\mathrm{x}, \mathrm{y}, \mathrm{z})\( \)=\left(\mathrm{y},-\mathrm{x}, \mathrm{z}^{2}\right)$ over the paraboloid \(\mathrm{z}=\mathrm{x}^{2}+\mathrm{y}^{2}\) with \(0 \leq \mathrm{z} \leq 1\)

Problem 270

Let the unit hemisphere be parametrized by $$ \begin{array}{ll} x=\cos u \sin v & 0

Problem 273

Let \(\mathrm{S}\) be the surface \(\mathrm{S}=\left[\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=1\right\\}\) and let \(\mathrm{f}\) be the function $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\(. Let \)\nabla \mathrm{f}^{-}$ represent the gradient of \(\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}) .\) Compute the integral $\iint_{\mathrm{S}} \nabla \mathrm{f} \cdot \mathrm{n}^{-} \mathrm{d} \mathrm{A}$.

Problem 274

Given that \(\mathrm{S}\) is the surface of a region \(\mathrm{U}\) for which the divergence theorem is applicable, let $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})\( be any point of \)S$ and let 0 be any fixed point in space. Show that the volume of \(\mathrm{U}\) is given by $\mathrm{V}=(1 / 3) \iint_{\mathrm{S}} \mathrm{r} \cos \varphi \mathrm{d} \mathrm{A}$, where \(\varphi\) is the angle between the directed line \(\mathrm{OP}\) and the outer normal S at \(\mathrm{P}\), and \(\mathrm{r}\) is the distance \(\mathrm{OP}\).

Problem 276

Let \(U\) be the interior of a closed surface \(S\). Let \(f, g\) be functions. Let \(\nabla \mathrm{f}\) be the gradient of \(\mathrm{f}\) and $\nabla^{2} \mathrm{f}\( be the divergence of the gradient of \)\mathrm{f}$. Prove: a) $\iint_{\mathrm{S}} \mathrm{f}(\nabla \mathrm{g}) \cdot \mathrm{n}^{-} \mathrm{da}=\iiint_{\mathrm{U}}\left(\mathrm{f} \nabla^{2} \mathrm{~g}+\nabla \mathrm{f} \cdot \nabla \mathrm{g}\right) \mathrm{dV}$. b) $\iint_{\mathrm{S}}(\mathrm{f} \nabla \mathrm{g}-\mathrm{g} \nabla \mathrm{f}) \cdot \mathrm{n}^{-} \mathrm{da}=\iiint_{\mathrm{U}}\left(\mathrm{f} \nabla^{2} \mathrm{~g}-\mathrm{g} \nabla^{2} \mathrm{f}\right) \mathrm{dV}$.

Problem 277

Verify Stokes's Theorem for the vector field $\mathrm{F}^{-}(\mathrm{x}, \mathrm{y}, \mathrm{z})\( \)=(\mathrm{z}, \mathrm{x}, \mathrm{y})$ where \(\mathrm{S}\) is defined by $\mathrm{z}=4-\mathrm{x}^{2}-\mathrm{y}^{3}, \mathrm{z} \geq 0$

Problem 279

Let $\mathrm{F}^{-}=\left(\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}\right)$ be a vector field that satisfies the following conditions $$ \begin{gathered} \left(\partial \mathrm{F}_{2} / \partial \mathrm{z}\right)=\left(\partial \mathrm{F}_{3} / \partial \mathrm{y}\right) ;\left(\partial \mathrm{F}_{3} / \partial \mathrm{x}\right)=\left(\partial \mathrm{F}_{1} / \partial \mathrm{z}\right) ;\left(\partial \mathrm{F}_{2} / \partial \mathrm{x}\right) \\\ =\left(\partial \mathrm{F}_{1} / \partial \mathrm{y}\right), \end{gathered} $$ on a region bounded by a curve c. (See Fig. 1). Prove, using Stokes's Theorem that \(\int_{\mathrm{C}} \mathrm{F}^{-} \cdot \mathrm{ds}^{-}=0\).

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks

Join over 22 million students in learning with our Vaia App

The first learning app that truly has everything you need to ace your exams in one place.

  • Flashcards & Quizzes
  • AI Study Assistant
  • Smart Note-Taking
  • Mock-Exams
  • Study Planner
Join over 22 million students in learning with our Vaia App Join over 22 million students in learning with our Vaia App