Americas
Europe
Problem 209
a) Let \(F^{\rightarrow}\) be a vector field on an open set \(V\) and \(C\) a curve in V defined on the interval \([a, b]\). Prove $\int_{(C)-} F^{\rightarrow}=-\int_{C} F^{-}\(, where \)C^{-}$ is the reverse path of the curve \(C\). b) Then evaluate $\int_{\mathrm{C}} \mathrm{F}^{-} \cdot \mathrm{d} \mathrm{C}^{-}\( where \)\mathrm{F}^{-}(\mathrm{x}, \mathrm{y})=\left(\mathrm{x}^{2}, \mathrm{xy}\right)$ along the line segment from the point \((1,1)\) to \((0,0)\) using the reverse path.
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Prove in an open connected set \(\mathrm{U}\) that $\mathrm{Q} \int_{\mathrm{P}, \mathrm{C}} \mathrm{F}^{-} \cdot \mathrm{dc}^{-}$ is independent of the path \(\mathrm{C}\) if \(\mathrm{F}^{-}\) has a potential function \(\left(\mathrm{F}^{-}=\operatorname{grad} \Phi\right.\) for some scalar function \(\left.\Phi\right)\).
Verify Green's Theorem for \(\int_{C}\left(x^{2}-y^{2}\right) d x+2 x y d y\), where \(\mathrm{C}\) is the clockwise boundary of the square formed by the lines \(\mathrm{x}=0, \mathrm{x}=2, \mathrm{y}=0\), and \(\mathrm{y}=2\)
Evaluate the following line integrals: a) $^{(3,4)} \int_{(1,-2)}\left[(\mathrm{ydx}-\mathrm{xdx}) / \mathrm{x}^{2}\right]\( on the line \)\mathrm{y}=3 \mathrm{x}-5$ b) $^{(1,3)} \int_{(0,2)}\left(3 \mathrm{x}^{2} / \mathrm{y}\right) \mathrm{dx}-\left(\mathrm{x}^{3} / \mathrm{y}^{2}\right)$ dy on the parabola \(\mathrm{y}=2+\mathrm{x}^{2}\) c) \(^{(2,8)} \int_{(0,0)} \nabla^{-} \mathrm{f} \cdot \mathrm{dc} \rightarrow\) where \(\nabla^{\rightarrow} \mathrm{f}\) is grad \(\mathrm{f}\) and \(\mathrm{f}\) is the function $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{2}-\mathrm{y}^{2} \cdot \mathrm{C}\( is the curve \)\mathrm{y}=\mathrm{x}^{3}$
A force \(\mathrm{F}\) is called conservative if it is exact. Show that the force (vector field) \(F^{-}(x, y)=(y \cos x y, x \cos x y)\) is conservative. Then find the work done by this force in moving a particle from the origin to the point \((3,8)\).
Show that the following functions are independent of the path in the \(\mathrm{xy}\) -plane and evaluate them: a) \(^{(x, y)} f_{(1,1,)} 2 x y d x+\left(x^{2}-y^{2}\right) d y\) b) \((x, y) f_{(0,0)} \sin y d x+x \cos y d y\)
The first learning app that truly has everything you need to ace your exams in one place.