Americas
Europe
Problem 185
Let \(\mathrm{f}(\mathrm{x})=1, \mathrm{x}\) rational and \(=0, \mathrm{x}\) rational be defined in the interval \([a, b]\). Show that is not Riemann integrable
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Proceed from the defintion of the Stieltjes integral to show that the function f given by $$ \begin{array}{cc} \mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})=0 & 0 \leq \mathrm{x} \leq 1 \\ \text { and }=1 & 1<\mathrm{x} \leq 2 \end{array} $$ is not Stieltjes integrable with respect to \(\mathrm{g}\).
Evaluate the Stieltjes integral $^{1} \int_{-1} \mathrm{x} \mathrm{d}|\mathrm{x}|$.
Find \(\mathrm{F}^{\prime}(\mathrm{x})\) where a) \(F(x)=x \int_{0} e^{-(x) 2(t) 2} d t\) b) \(F(x)=\sin x \int_{(x) 2}\left(x^{2}-t^{2}\right)^{n} d t\)
Given that \(\mathrm{f}_{1}(\mathrm{x})\) and \(\mathrm{f}_{2}(\mathrm{x})\) are Riemann integrable on \([\mathrm{a}, \mathrm{b}]\) and that $\mathrm{I} \geq \mathrm{J}$ (where I and J represent the upper and lower integrals, respectively, of any Riemann integrable function), prove that \(\mathrm{f}_{1}(\mathrm{x})+\mathrm{f}_{2}(\mathrm{x})\) is Riemann integrable on \([\mathrm{a}, \mathrm{b}]\) and that $\mathrm{b} \int_{\mathrm{a}}\left[\mathrm{f}_{1}(\mathrm{x})+\mathrm{f}_{2}(\mathrm{x})\right] \mathrm{d} \mathrm{x}=\mathrm{b} \int_{\mathrm{a}} \mathrm{f}_{1}(\mathrm{x}) \mathrm{dx}+\mathrm{b} \int_{\mathrm{a}} \mathrm{f}_{2}(\mathrm{x}) \mathrm{dx}$
a) Prove that if \(\mathrm{f}(\mathrm{x})\) is Riemann integrable on \([\mathrm{a}, \mathrm{b}]\) then \(\mid \mathrm{f}(\mathrm{x})\) is Riemann integrable on the same interval. b) Prove that if \(\mathrm{f}(\mathrm{x})\) is Riemann integrable on \([\mathrm{a}, \mathrm{b}]\) then $$ \mathrm{b} \int_{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx}\left|\leq \mathrm{b} \int_{\mathrm{a}}\right| \mathrm{f}(\mathrm{x}) \mid \mathrm{d} \mathrm{x} $$
The first learning app that truly has everything you need to ace your exams in one place.