Americas
Europe
Problem 157
Find the maximum and minimum values of $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$ on the surface of the ellipsoid $\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left(\mathrm{x}^{2} / 64\right)+\left(\mathrm{y}^{2} / 36\right)+\left(\mathrm{z}^{2} / 25\right)=1$
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Find the critical points and the nature of each critical point (i.e., relative maximum, relative minimum, or saddle point) for: a) \(f(x, y)=x^{2}-2 x y+2 y^{2}+x-5\) b) $\mathrm{f}(\mathrm{x}, \mathrm{y})=(1-\mathrm{x})(1-\mathrm{y})(\mathrm{x}+\mathrm{y}-1)$.
\(\mathrm{M}\) where \(\mathrm{p}_{1}=1, \mathrm{p}_{2}=2\) and \(\mathrm{M}=10 .\) Check the second-order conditions to verify that the solution is indeed a maximum.
Find the maximum and minimum of \(z=x^{2}+2 y^{2}-x\) on the set $x^{2}+y^{2} \leq 1$
Let \(\mathrm{f}\) be the following quadratic form $f(x, y, z)=x^{2}+y^{2}+3^{2}-x y+2 x z+y z$ Find a relative minimum of \(\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})\).
a) Find whether the origin is a relative maximum or minimum, or neither for the function $\mathrm{f}(\mathrm{x}, \mathrm{y})=\log \left(1+\mathrm{x}^{2}+\mathrm{y}^{2}\right)$. b) Find the critical points of the function $$ f(x, y)=x^{2}-12 y^{2}+4 y^{3}+3 y^{4} $$ and determine whether each is a relative maximum or saddle point of \(\mathrm{f}(\mathrm{x}, \mathrm{y})\)
The first learning app that truly has everything you need to ace your exams in one place.