Open in App
Log In Start studying!

Select your language

Suggested languages for you:

Problem 158

Find the maximum value of \(\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{xy}\); \((\mathrm{xy}>0)\) subject to the constraint \(\mathrm{x}^{2}+\mathrm{y}^{2}=8\) by drawing the level curves and by another method.

Problem 159

For the following quadratic form $$ \mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{ax}^{2}+2 \mathrm{bxy}+\mathrm{cy}^{2} $$ state conditions for \(\mathrm{f}(\mathrm{x}, \mathrm{y})\) to have a minimum and maximum value, using eigenvalues and the side condition \(\mathrm{x}^{2}+\mathrm{y}^{2}=1\).

Problem 161

Find the maximum and minimum of \(z=x^{2}+2 y^{2}-x\) on the set $x^{2}+y^{2} \leq 1$

Problem 162

Find the maximum and minimum of $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{xy}-\mathrm{y}+\mathrm{x}-1$ in the closed disk \(\mathrm{D}=\\{\mathrm{P}:|\mathrm{P}| \leq 2\\}\) ( \(\mathrm{P}\) is a point in the \(\mathrm{xy}\) -plane).

Problem 163

Find the maximum value of the function $$ f(x, y)=4 x y-2 x^{3}-y^{4} $$ in the square $\mathrm{D}=\\{(\mathrm{x}, \mathrm{y}):|\mathrm{x}| \leq 2,|\mathrm{y}| \leq 2\\}$.

Problem 164

Find the points which might furnish relative maxima and minima of the function $$ \mathrm{f}(\mathrm{x}, \mathrm{y})=2 \mathrm{xy}-\left(1-\mathrm{x}^{2}-\mathrm{y}^{2}\right)^{3 / 2} $$ in the closed region \(\mathrm{x}^{2}+\mathrm{y}^{2} \leq 1\)

Problem 165

Find the extrema for the function \(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\) subject to the constraint \(x^{2}+2 y^{2}-z^{2}-1=0\)

Problem 166

Let the number 12 equal the sum of three parts $\mathrm{x}, \mathrm{y}, \mathrm{z}\(. Find values of \)\mathrm{x}, \mathrm{y}, \mathrm{z}$ so that \(\mathrm{xy}^{2} \mathrm{z}^{2}\) shall be a maximum (given the first condition and that \(\mathrm{x}, \mathrm{y}, \mathrm{z}>0)\).

Problem 167

Find the maximum of \(\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{xy}\) on the curve $$ G(x, y)=(x+1)^{2}+y^{2}=1 $$ assuming that such a maximum exists.

Problem 168

a) Find the maxima and minima of $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x}^{2}+\mathrm{y}^{2}$ on the ellipse \(\mathrm{G}(\mathrm{x}, \mathrm{y})=2 \mathrm{x}^{2}+3 \mathrm{y}^{2}=1\) b) Find the maxima value of $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{xyz}\( on the plane \)(x / a)+(v / b)+(z / c)=1(a, b, c>0)$

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks

Join over 22 million students in learning with our Vaia App

The first learning app that truly has everything you need to ace your exams in one place.

  • Flashcards & Quizzes
  • AI Study Assistant
  • Smart Note-Taking
  • Mock-Exams
  • Study Planner
Join over 22 million students in learning with our Vaia App Join over 22 million students in learning with our Vaia App