Americas
Europe
Problem 129
(a) Let \(\mathrm{f}: \mathrm{R}^{2} \rightarrow \mathrm{R}\) be defined by $f(x, y)=2 x y\left\\{\left(x^{2}-y^{2}\right) /\left(x^{2}+y^{2}\right)\right\\}, x^{2}+y^{2} \neq 0$ and \(=0, \quad \mathrm{x}=\mathrm{y}=0\). Show that $\left(\partial^{2} \mathbf{f} / \partial \mathrm{x} \partial \mathrm{y}\right) \neq\left(\partial^{2} \mathrm{f} / \partial \mathrm{x} \partial \mathrm{y}\right)$ and explain why. (b) Does there exist a function \(\mathrm{f}\) with continuous second partial derivatives (i.e., an element of \(\mathrm{C}^{2}\) ) such that of $/ \partial \mathrm{x}=\mathrm{x}^{2}$ and \partialf \(/ \partial \mathrm{y}=\mathrm{xy}\) ?
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Using Taylor's Theorem, approximate \(\sqrt{40}\) to three decimal places.
(a) State and prove Euler's Theorem on positively homogeneous functions of two variables. (b) Let \(\mathrm{F}(\mathrm{x}, \mathrm{y})\) be positively homogeneous of degree 2 and $\mathrm{u}=\mathrm{r}^{\mathrm{m}} \mathrm{F}(\mathrm{x}, \mathrm{y})\( where \)\mathrm{r}=\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{1 / 2}$. Show that $\left(\partial^{2} \mathrm{u} / \partial \mathrm{x}^{2}\right)+\left(\partial^{2} \mathrm{u} / \partial \mathrm{y}^{2}\right)$ $=\mathrm{r}^{\mathrm{m}}\left\\{\left(\partial^{2} \mathrm{~F} / \partial \mathrm{x}^{2}\right)+\left(\partial^{2} \mathrm{~F} / \partial \mathrm{y}^{2}\right)\right\\}+\mathrm{m}(\mathrm{m}+4) \mathrm{r}^{\mathrm{m}-2} \mathrm{~F}$
Show that the functions $\mathrm{f}, \mathrm{g} \in \mathrm{C}^{1}(\mathrm{E}), \mathrm{E}\( open in \)\mathrm{R}^{2}$, are functionally dependent (i.e., there exists a function \(\mathrm{F}\) such that \(g=F^{\circ} \mathrm{f}\) ) if det \(J \phi(x, y)=0\) for \(\Phi=(f, g)\) and $(x, y)\( in some neighborhood of \)(a, b)\(, where \)(\partial f / \partial x)(a, b) \neq 0$
State and prove the Cauchy Mean Value Theorem.
Give a Taylor expansion of \(f(x, y)=e^{x} \cos y\) on some compact convex domain \(\mathrm{E}\) containing \((0,0)\).
The first learning app that truly has everything you need to ace your exams in one place.