Americas
Europe
Problem 105
Show that if a function \(\mathrm{F}: \mathrm{R}^{2} \rightarrow \mathrm{R}\) satisfies $\partial \mathrm{F} / \partial \mathrm{x}=\partial \mathrm{F} / \partial \mathrm{y}$, then \(F(x, y)=f(x+y)\) where \(f\) is some differentiable function of one variable, \(\mathrm{s}=\mathrm{x}+\mathrm{y}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.
1 1 ] dill [ 2 Let \(\mathrm{u}(\mathrm{x}, \mathrm{y})\) and $\mathrm{v}(\mathrm{x}, \mathrm{y})\( be defined as functions of \)\mathrm{x}\( and \)\mathrm{y}$ by the equations \(u \cos v-x=0\) (1) \(u \sin v-y=0\) (2) Find \((\partial \mathrm{u} / \partial \mathrm{x}) \quad\) and \(\quad(\partial \mathrm{v} / \partial \mathrm{x})\)
Use differentials to compute a) \((\partial z / \partial \mathrm{x}),(\partial z / \partial y)\) where \(z=\left[\left(x^{2}-1\right) / y\right]\) b) $(\partial r / \partial x),(\partial r / \partial y),(\partial x / \partial r)\( where \)r=\sqrt{\left(x^{2}+y^{2}\right)}$ c) $(\partial \mathrm{z} / \partial \mathrm{x}),(\partial \mathrm{z} / \partial \mathrm{y})\( where \)\mathrm{z}=\arctan (\mathrm{y} / \mathrm{x})$
Show that the line normal to the surface given by $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0\( at a point \)\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ has direction ratios $(\partial \mathrm{F} / \partial \mathrm{x})|[(\mathrm{x}) 0,(\mathrm{y}) 0,(z) 0]:(\partial \mathrm{F} / \partial \mathrm{y})|[(\mathrm{x}) 0,(\mathrm{y}) 0,(\mathrm{z}) 0]:(\partial \mathrm{F} / \partial \mathrm{z}) \mid[(\mathrm{x}) 0,(\mathrm{y}) 0,(\mathrm{z}) 0]$ What are these ratios when \(z=f(x, y)\) is a solution to \(\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0 ?\)
Let \(u=r^{3}\) be a scalar field where \(r\) is the distance \(O P\) from the origin 0 to a variable point \(\mathrm{P}\), in \(\mathrm{R}^{3}\). Find the gradient of \(u\) at \(P\) without resorting to rectangular coordinates.
Find the line orthogonal to the graph of $\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{xy}\( at the point \)\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)=(-2,3,-6)$.
The first learning app that truly has everything you need to ace your exams in one place.