Americas
Europe
Problem 65
Show that the exponential function defined by $$ \exp \mathrm{x}=\lim _{\mathrm{n} \rightarrow \infty}[1+(\mathrm{x} / \mathrm{n})]^{\mathrm{n}} $$ is everywhere continuous.
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Show that the function \(\mathrm{f}: \mathrm{R}^{n} \rightarrow \mathrm{R}\) given by $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\max \left\\{\mathrm{x}_{1}, \ldots ., \mathrm{x}_{\mathrm{n}}\right\\}$ is continuous everywhere.
Prove the Intermediate Value Theorem for the derivative of a real differentiable function on \([a, b]\).
What is meant by a discontinuity of the first kind? A discontinuity of the second kind? Show that monotonic functions have no discontinuities of the second kind.
Show that $$ \lim _{(x, y) \rightarrow(0,0)}\left[\left(2 x^{3}-y^{3}\right) /\left(x^{2}+y^{2}\right)=0\right. $$
Find a) $\lim _{\mathrm{x} \rightarrow \mathrm{C}}\left[\left(\mathrm{x}_{\mathrm{n}}-\mathrm{C}_{\mathrm{n}}\right) /(\mathrm{x}-\mathrm{C})\right]$ b) $\lim _{\mathrm{x} \rightarrow 0}\left[\left(\mathrm{x}^{2}\right) /\left\\{\left(\mathrm{x}^{2}+1\right)^{(1 / 2)}-1\right\\}\right] .$
The first learning app that truly has everything you need to ace your exams in one place.