Americas
Europe
Problem 58
Show that $$ \lim _{(x, y) \rightarrow(0,0)}\left[\left(2 x^{3}-y^{3}\right) /\left(x^{2}+y^{2}\right)=0\right. $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Let \(\mathrm{f}: \mathrm{R}^{3} \rightarrow \mathrm{R}\) be given by $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\left[\left(\mathrm{y}^{3} \mathrm{z}\right) /\left(1+\mathrm{x}^{2}+\mathrm{z}^{3}\right)\right]$ ] Show that \(\mathrm{f}\) is continuous at \((0,0,0)\).
Show that the function \(\mathrm{f}: \mathrm{R}^{n} \rightarrow \mathrm{R}\) given by $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\max \left\\{\mathrm{x}_{1}, \ldots ., \mathrm{x}_{\mathrm{n}}\right\\}$ is continuous everywhere.
To which class of continuous functions do the following functions belong?
a) Weierstrass' s nowhere differentiable function
b) $\mathrm{f}(\mathrm{x}, \mathrm{y},
z)=\mathrm{e}^{\mathrm{x}-\mathrm{y}+\mathrm{z}}$
c) \(f(t)=t^{3} e_{1}+(\sin t) e_{2}+t^{8 / 3} e_{3},-\infty
Let \(\mathrm{f}: \mathrm{R}^{2} \rightarrow \mathrm{R}\) be a real valued function with domain \(\mathrm{R}^{2}\) which is of the form $$ f\left(x_{1}, x_{2}\right)=\left[\left(5 x_{1}\right) /\left(1+x^{2} 2\right)\right] $$ Show that \(\mathrm{f}\) is continuous at \((0,0)\).
Let \(\mathrm{f}(\mathrm{x}, \mathrm{y})\) be given by $$ \begin{array}{cl} \mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{xy}^{2} /\left(\mathrm{x}^{2}+\mathrm{y}^{4}\right) & (\mathrm{x}, \mathrm{y}) \neq(0,0) \\ \text { and }=0 & \mathrm{x}=\mathrm{y}=0 \end{array} $$ Is f continuous at the origin?
The first learning app that truly has everything you need to ace your exams in one place.