Open in App
Log In Start studying!

Select your language

Suggested languages for you:

Problem 34

Let $\mathrm{T}: \mathrm{V}_{1} \rightarrow \mathrm{V}_{2} ; \mathrm{S}: \mathrm{V}_{2} \rightarrow \mathrm{V}_{3} ; \mathrm{R}: \mathrm{V}_{3} \rightarrow \mathrm{V}_{4}$ be linear transformations where \(\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}\) and \(\mathrm{V}_{4}\) are vector spaces defined over a common field \(\mathrm{K}\). If we define multiplication of transformations by $$ \mathrm{S}^{\circ} \mathrm{T}(\mathrm{v})=\mathrm{S}(\mathrm{T}(\mathrm{v})) $$ show that the multiplication is associative, i.e., $$ (\mathrm{RS}) \mathrm{T}(\mathrm{v})=\mathrm{R}(\mathrm{ST}(\mathrm{v})), \text { where } \mathrm{v} \in \mathrm{V}_{1} $$

Problem 35

Show that in matrix arithmetic we can have the following: a) \(\mathrm{AB} \neq \mathrm{BA}\). b) \(\mathrm{A} \neq 0, \mathrm{~B} \neq 0\), and yet, \(\mathrm{AB}=0\). c) \(\mathrm{A} \neq 0\) and \(\mathrm{A}^{2}=0\) d) \(\mathrm{A} \neq 0, \mathrm{~A}^{2} \neq 0\), and \(\mathrm{A}^{3}=0\). e) \(\mathrm{A}^{2}=\mathrm{A}\) with \(\mathrm{A} \neq 0\) and $\mathrm{A} \neq \mathrm{I}$. f) \(A^{2}=I\) with \(A \neq-I\) and \(A \neq I\).

Problem 36

For \(\mathrm{n} \times \mathrm{n}\) matrices \(\mathrm{A}, \mathrm{B}\) show that det \(\mathrm{AB}=\operatorname{det} \mathrm{A}\) det \(\mathrm{B}\).

Problem 37

Find the volume of the parallelepiped determined by the vectors \(\mathrm{u}=(2,3,5), \mathrm{v}=(-4,2,6)\) and \(\mathrm{w}=(1,0,3)\) in \(\mathrm{xyz}\) -space.

Problem 38

Consider the vector space \(\mathrm{C}[0,1]\) of all continuous functions defined on \([0,1]\). If $$ \mathrm{f} \in \mathrm{C}[0,1] $$ show that $$ \left(1 \int_{0} \mathrm{f}^{2}(\mathrm{x}) \mathrm{dx}\right)^{1 / 2} $$ defines a norm on all elements of this vector space.

Problem 39

Let \(\mathrm{A}\) be an \(\mathrm{n} \times \mathrm{n}\) Hermitian matrix (i.e., $\mathrm{A}=\mathrm{A}^{*} \equiv\left(\mathrm{A}^{\mathrm{T}}\right)^{-}=\left(\mathrm{A}^{-}\right)^{\mathrm{T}}$ where \(\mathrm{A}^{-}\) is the conjugate of \(\mathrm{A}\) ). Show that the eigenvalues of \(\mathrm{A}\) are real.

Problem 40

Show that a linear operator \(\mathrm{A}\) on a finite-dimensional vector space \(\mathrm{X}\) is invertible if and only if it is one-to-one or onto.

Problem 42

Show that the \(\mathrm{n} \times \mathrm{n}\) matrix \(\mathrm{A}\) is invertible if and only if det \(\mathrm{A} \neq 0\)

Problem 43

Show that the system $$ \begin{aligned} &a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1} \\ &\cdot \\ &\cdot \\ &\cdot \\ &a_{n 1} x_{1}+\ldots+a_{n n} x_{n}=b_{n} \end{aligned} $$ has a unique solution if det \(\mathrm{A} \neq 0\) where Moreover, solve the system (1) for $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ (Cramer's Rule).

Problem 45

Construct an orthogonal matrix from the eigenvectors associated with the symmetric matrix: $$ A=\begin{array}{rlr} 5 & 1 & 1 \\ 1 & 5 & -1 \mid \\ 1 & -1 & 5 \end{array} \mid $$ How does the transformation \(\mathrm{x}=\mathrm{Hy}\) affect the related quadric surface, where \(\mathrm{H}\) is the orthogonal matrix?

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks

Join over 22 million students in learning with our Vaia App

The first learning app that truly has everything you need to ace your exams in one place.

  • Flashcards & Quizzes
  • AI Study Assistant
  • Smart Note-Taking
  • Mock-Exams
  • Study Planner
Join over 22 million students in learning with our Vaia App Join over 22 million students in learning with our Vaia App