Americas
Europe
Problem 468
(a) Prove that \(\mathrm{f}(\mathrm{t})=\mathrm{t}^{\mathrm{n}}, \mathrm{n}>0\), is of exponential order \(\alpha\) on \([0, \infty]\) for all \(\alpha>0\). (b) Prove that \(\mathrm{f}(\mathrm{t})=\sin \mathrm{kt}\) is of exponential order \(\alpha\) on \([0, \infty]\) for all \(\alpha>0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Solve the initial value problem $$ \begin{aligned} &y^{\prime \prime}(t)+2 y^{\prime}(t)+5 y(t)=H(t) \\ &y(0)=y^{\prime}(0)=0 \end{aligned} $$ where $$ \mathrm{H}(\mathrm{t})=1, \quad 0 \leq \mathrm{t}<\pi $$ $$ \text { and }=0, \quad t \geq \pi, $$ as shown in the accompanying graph.
(a) Define the convolution of two functions \(\mathrm{f}(\mathrm{t})\) and \(\mathrm{g}(\mathrm{t})\). (b) State the convolution theorem for Laplace transforms. (c) Find the inverse Laplace transform $$ \mathrm{f}(\mathrm{t})=\mathrm{L}^{-1}\\{\mathrm{~F}(\mathrm{~S})\\}=\mathrm{L}^{-1}\left\\{1 /\left(\mathrm{s}^{2}+\mathrm{c}^{2}\right)^{2}\right\\} $$ \((\mathrm{c}=\) constant \() .\)
Find the inverse Laplace transforms (a) \(L^{-1}\left[1 /\left(s^{2}-2 s+9\right)\right]\), (b) \(L^{-1}\left[(s+1) /\left(s^{2}+6 s+25\right)\right]\)
Prove the following properties of the Laplace transform denoted by \(L\\{f(t)\\}\) (a) \(L\left\\{c_{1} f_{1}(t)+c_{2} f_{2}(t)+\ldots+c_{n} f_{n}(t)\right\\}\) $=c_{1} L\left\\{f_{1}(t)\right\\}+c_{2} L\left\\{f_{2}(t)\right\\}+\ldots+c_{n} L\left\\{f_{n}(t)\right\\}$ where all \(c_{j}\) are constants. (b) $L\left\\{f^{(n)}(t)\right\\}=s^{n} L\\{f(t)\\}-{ }^{n} \sum_{k}=1 s^{k-1} f^{(n-k)}(C$ if \(\mathrm{f}^{(\mathrm{k})}(\mathrm{t})\) are of some finite exponential orders for \(\mathrm{k}=1,2, \ldots, \mathrm{n}-1\) and if \(L\left\\{f^{(n)}(t)\right\\}\) exists. (c) \(L\left\\{e^{-a t} f(t)\right\\}=G(s+a)\) where \(\mathrm{G}(\mathrm{s})=\mathrm{L}\\{\mathrm{f}(\mathrm{t})\\}\) and a is a real constant. (d) $L\left\\{t^{n} f(t)\right\\}=(-1)^{n}\left[\left(d^{n} F\right) / d s^{n}\right]$ where \(\mathrm{F}(\mathrm{s})=\mathrm{L}\\{\mathrm{f}(\mathrm{t})\\}\) (e) \(L\\{(1 / t) f(t)\\}={ }^{\infty} \int_{S} F(\sigma) d \sigma\) where $$ \mathrm{F}(\mathrm{s})=\mathrm{L}\\{\mathrm{f}(\mathrm{t})\\} $$
Prove that if $$ f(x+b)=-f(x) $$ for all \(\mathrm{x}\), where \(\mathrm{b}\) is a constant, then $$ L\\{f(t)\\}=\left[\left\\{b \int_{0} e^{-s t} f(t) d t\right\\} /\left(1+e^{-b s}\right)\right] $$ where \(L\) is the Laplace transform operator. Functions satisfying (1) are often called antiperiodic and are very important in electrical engineering.
The first learning app that truly has everything you need to ace your exams in one place.