Americas
Europe
Problem 400
Let \(\mathrm{f}(\mathrm{x})\) be a real valued function of one variable, \(\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}\), with a period \(2 c\) (i.e. \(\mathrm{f}(\mathrm{x}+2 \mathrm{c})=\mathrm{f}(\mathrm{x})\) for all \(\mathrm{x} \in \mathrm{R}\) ). Define the Fourier series of \(\mathrm{f}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.
State the most general Pointwise Convergence Theorem for Fourier series (i.e. the one with the weakest premises). Discuss its meaning.
The Fourier series for $\mathrm{f}(\mathrm{x})=|\mathrm{x}|
\quad-\pi<\mathrm{x} \leq \pi$ and
$$
\begin{aligned}
&\mathrm{f}(\mathrm{x}+2 \pi)=\mathrm{f}(\mathrm{x}) \text { is } \\
&\qquad(\pi / 2)-(4 / \pi)^{\infty} \sum_{\mathrm{n}=1}\left[\\{\cos (2
\mathrm{n}-1) \mathrm{x}\\} /\left\\{(2 \mathrm{n}-1)^{2}\right\\}\right]
\end{aligned}
$$
Without computing any Fourier coefficients, find the Fourier series for
$$
\begin{array}{ll}
g(x)=-1 & -\pi
Find the Fourier series of the function \(\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}},-\pi<\mathrm{X}<\pi\)
Find the Fourier sine series of \(\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}\) over the interval \((0,1)\).
A piecewise continuous function \(\mathrm{f}(\mathrm{x})\) is to be approximated in the interval \((-\pi, \pi)\) by a trigonometric polynomial of the form $$ g_{n}(x)=\left(A_{0} / 2\right)+{ }^{n} \sum_{k=1} A_{k} \cos k x+B_{k} \sin k x $$ where \(\mathrm{A}_{\mathrm{k}}, \mathrm{B}_{\mathrm{k}}, \mathrm{A}_{\circ}\) are undetermined. Prove that the total square deviation $$ \mathrm{D}_{\mathrm{n}}=\pi \int_{-\pi}\left[\mathrm{f}(\mathrm{x})-\mathrm{g}_{\mathrm{n}}(\mathrm{x})\right]^{2} \mathrm{~d} \mathrm{x} $$ is minimized by choosing \(A_{0}, A_{k}, B_{k}\) to be the Fourier coefficients of $\mathrm{f}, \mathrm{a}_{\mathrm{k}}, \mathrm{b}_{\mathrm{k}}, \mathrm{a}_{0}$.
The first learning app that truly has everything you need to ace your exams in one place.