Americas
Europe
Problem 326
Define a Cauchy sequence. Prove: a) In any metric space \(\mathrm{X}\), every convergent sequence is a Cauchy sequence. b) Suppose \(\left\\{p_{n}\right\\}\) is a Cauchy sequence in a compact metric space \(\mathrm{X}\), then \(\left\\{\mathrm{p}_{\mathrm{n}}\right\\}\) converges to some point of \(\mathrm{X}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.
Evaluate the limit $\lim _{\mathrm{x} \rightarrow \infty}\left[\left\\{\sqrt{(\log \mathrm{x}) \log (\log \mathrm{x})\\}} /\left\\{\mathrm{e}^{\sqrt{\mathrm{x}}}\right\\}\right]\right.$
Find the upper and lower limits of the sequence \(\left\\{A_{n}\right\\}\) defined $$ \text { by } \mathrm{A}_{1}=0 ; \mathrm{A}_{2 \mathrm{~m}}=\left[\left(\mathrm{A}_{2 \mathrm{~m}-1}\right) /(2)\right] ; \mathrm{A}_{2 \mathrm{~m}+1}=(1 / 2)+\mathrm{A}_{2 \mathrm{~m}} $$
Define a convergent sequence in a metric space \(\mathrm{X}\). Prove: a) \(\lim _{n \rightarrow \infty}\left(1 / n^{p}\right)=0\) for \(p>0\) b) \(\lim _{n \rightarrow \infty} n \sqrt{p}=1\) for \(p>0\) c) \(\lim _{n \rightarrow \infty} n \sqrt{n}=1\) d) $\lim _{n \rightarrow \infty}\left[\left\\{n^{\alpha}\right\\} /\left\\{(1+p)^{n}\right\\}\right]=0\( for \)p>0 . \alpha$ real. e) If \(|x|<1, \lim _{n \rightarrow \infty} x^{n}=0\)
Show that the following sequences are convergent: a) $a_{n}=[\\{1 \cdot 3 \cdot 5 \ldots(2 n-1)\\} /\\{2 \cdot 4 \cdot 6 \ldots(2 n)\\}]$ \(\mathrm{n}=1,2,3, \ldots\) b) \(a_{n}=(1 / 1 !)+(1 / 2 !)+\ldots+(1 / n !)\) \(\mathrm{n}=1,2,3, \ldots\)
Find the limit of the sequence defined by $$ \mathrm{x}_{1}=(2 / 3) $$ and $$ \mathrm{x}_{\mathrm{n}}+1=\left[\left\\{\mathrm{x}_{\mathrm{n}}+1\right\\} /\left\\{2 \mathrm{x}_{\mathrm{n}}+1\right\\}\right] $$
The first learning app that truly has everything you need to ace your exams in one place.