Open in App
Log In Start studying!

Select your language

Suggested languages for you:

Problem 285

Determine if the following improper integrals of the first kind converge or diverge: a) \({ }^{\infty} \int_{1}\left(1 / \mathrm{x}^{\mathrm{p}}\right) \mathrm{dx}\) b) \({ }^{\infty} \int_{0} \mathrm{e}^{-\mathrm{rx}} \mathrm{dx}\) c) \(^{\infty} \int_{0} \sin x d x\).

Short Answer

Expert verified
The improper integrals converge or diverge as follows: a) Converges for \(p > 1\) and diverges for \(p \leq 1\). b) Converges, and the value is \(\frac{1}{r}\). c) Diverges.
See the step by step solution

Step by step solution

Unlock all solutions

Get unlimited access to millions of textbook solutions with Vaia Premium

Over 22 million students worldwide already upgrade their learning with Vaia!

Step 1: Identify the Test

For improper integrals of functions of the form \(1 / x^p\), we can apply the p-integral convergence test. In this case, our \(p\) is given by the exponent of \(x\).

Step 2: Apply the p-integral Convergence Test

We compare our \(p\) value to 1. The integral converges if \(p > 1\), and diverges if \(p \leq 1\). In this case, we are not given a specific value for \(p\), so we cannot definitively conclude convergence or divergence.

Step 3: Conclusion

The convergence of the integral depends on the value of \(p\). The integral converges for \(p > 1\) and diverges for \(p \leq 1\). b) \({ }^{\infty} \int_{0} \mathrm{e}^{-\mathrm{rx}} \mathrm{dx}\)

Step 1: Identify the Test

For improper integrals of functions involving exponentials, we can apply the exponential convergence test.

Step 2: Apply the Exponential Convergence Test

To evaluate the improper integral, we can rewrite it as a limit: \[\lim_{b \to \infty} \int_0^b e^{-rx} dx\] Now, we evaluate the integral: \[\lim_{b \to \infty} \left[ -\frac{e^{-rx}}{r} \right]_0^b = \lim_{b \to \infty} \left(-\frac{e^{-rb}}{r} + \frac{1}{r}\right)\] Since \(r > 0\), \(b \to \infty\), we have \(e^{-rb} \to 0\), so the limit is finite and equal to \[\frac{1}{r}\]

Step 3: Conclusion

The improper integral converges, and the value of the integral is \(\frac{1}{r}\). c) \(^{\infty} \int_{0} \sin x d x\)

Step 1: Identify the Test

For improper integrals of trigonometric functions, we can apply the limit test or the comparison test. In this particular case, the limit test will work just fine.

Step 2: Apply the Limit Test

Rewrite the improper integral as a limit: \[\lim_{b \to \infty} \int_0^b \sin x dx\] Now, evaluate the integral: \[\lim_{b \to \infty} \left[-\cos x \right]_0^b = \lim_{b \to \infty} (-\cos b + \cos 0)\] The limit does not exist because \(\cos b\) oscillates between -1 and 1 as \(b\) goes to infinity.

Step 3: Conclusion

The improper integral diverges, since the limit of the integral does not exist.

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Most popular questions from this chapter

Chapter 10

a) Given \(\mathrm{r}=\left[\left(\mathrm{x}-\mathrm{x}_{0}\right)^{2}+\left(\mathrm{y}-\mathrm{y}_{0}\right)^{2}\right]\), show that the integral \(\iint_{D}\left(1 / r^{m}\right) d A\), where \(\left(x_{0}, y_{0}\right)\) is a Point of \(D\) and \(m>0\) (so that the integral is improper), is convergent if \(\mathrm{m}<2\) (D is a circle with center at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)\( and with radius \)\mathrm{c}$ ). b) Show that \(\iint_{D} \sin (\mathrm{y} / \mathrm{x}) \mathrm{d} \mathrm{A}\) is absolutely convergent, where D is the square domain \(0<\mathrm{x}<1,0<\mathrm{y}<1\)

Chapter 10

Evaluate, for any constant \(c>0\) $$ \infty \int_{-\infty} e^{-c(x) 2} d x $$ and using this, evaluate $$ \int_{(R) n} e^{-\langle x, x} d x_{1} d x_{2} \ldots d x_{n} $$ where \(x \in R^{n}, P\) is a positive definite symmetric matrix, and \(<>\) denotes the Euclidean inner product (i.e., \(<\mathrm{Tx}, \mathrm{x}>\) is a positive definite quadratic form).

Chapter 10

Test the following integrals for convergence: a) \(^{\infty} \int_{0}[\mathrm{dx} /\\{(1+\mathrm{x}) \sqrt{\mathrm{x}}\\}]\) b) \(^{\infty} \int_{-\infty}[\mathrm{dx} /\\{\mathrm{x}(\mathrm{x}-1)\\}]\)

Chapter 10

Test the following integrals of the first kind for convergence: a) \({ }^{\infty} \int_{0}(1 / \mathrm{t}) \sin \mathrm{t} \mathrm{dt}\) b) \(^{\infty} \int_{0} \sin u^{2}\) du .

Chapter 10

Prove the following theorems (assume \(\mathrm{f}(\mathrm{x}) \in \mathrm{C}\) ): a) For \(\mathrm{a} \leq \mathrm{x}<\infty\), if $^{\infty} \int_{\mathrm{a}}|\mathrm{f}(\mathrm{x})| \mathrm{dx}\( converges then \){ }^{\infty} \int_{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}$ converges. b) For \(\mathrm{a} \leq \mathrm{x}<\infty\), if $\lim _{\mathrm{x} \rightarrow \infty} \mathrm{x}^{\mathrm{p}} \mathrm{f}(\mathrm{x})$ exists for \(\mathrm{p}>1\), then \(\infty_{a}|f(x)| d x\) converges. It is assumed that \(f\) is bounded on $[a, c]\( for every \)c>a$ c) For \(\mathrm{a}<\mathrm{x} \leq \mathrm{b}\), if $\lim _{\mathrm{x} \rightarrow \infty}^{+}(\mathrm{x}-\mathrm{a})^{\mathrm{p}} \mathrm{f}(\mathrm{x})\( exists for \)0<\mathrm{p}<1$, and f is bounded on \((a, b]\) then \(b_{a+}|f(x)| d x\) converges.

Join over 22 million students in learning with our Vaia App

The first learning app that truly has everything you need to ace your exams in one place.

  • Flashcards & Quizzes
  • AI Study Assistant
  • Smart Note-Taking
  • Mock-Exams
  • Study Planner
Join over 22 million students in learning with our Vaia App Join over 22 million students in learning with our Vaia App

Recommended explanations on Math Textbooks