Static Friction

Friction is very crucial in our daily lives, as they help to prevent car tires from slipping on the ice in winter, and they make it possible for a car to stop when braking. A person jumping with a parachute descends feels an air drag, which is the force of fluid friction exerted by the air on a moving body. Furthermore, a ball that rolls on the ground will slow down until it eventually stops due to rolling friction, both of these are examples of contact forces.

Static Friction Static Friction

Create learning materials about Static Friction with our free learning app!

  • Instand access to millions of learning materials
  • Flashcards, notes, mock-exams and more
  • Everything you need to ace your exams
Create a free account
Table of contents

    People pushing car Static Friction VaiaFig. 1 - People attempting to overcome the force of static friction to push a stalled car out of the road.

    If two bodies touch each other directly, they are in contact. Contact forces are used to explain the interaction between two bodies. Some examples of contact forces include the normal force and the frictional force. There are two broad types of friction forces that all the others fall into; static and kinetic friction. In this article, we will focus on the force of static friction and explain its mathematical representation. We will also discuss the differences between static and kinetic friction.

    Static Friction: Definition

    If we have a box on the floor and we try to push it with some force, the box may just stand still and not move. This is due to the static friction force. The static frictional force occurs when the object and surface are at rest relative to each other. There is no motion of one relative to the other. Due to static friction, an object will stay still on a surface without slipping. The floor exerts a static friction force that is equal in magnitude and opposite in direction to the applied force until the force applied is greater than the maximum static frictional force. The static friction force can be shown as \(\overset\rightharpoonup{f_{\mathrm s}}\).

    It is important to note that this has nothing to do with Newton's Third Law, as the action-reaction force pair always acts on different objects.

    Static Friction Relationship A box at rest applied a force F VaiaFig. 2 - A box initially at rest experiencing an applied force \(\overset\rightharpoonup F\) to overcome the force of static friction.

    In the figure above, we see a box that is initially at rest. The normal force \(\overset\rightharpoonup N\) is upwards and is exerted on the box by the floor, while the weight \(\overset\rightharpoonup W\) acts downward. Because the box is at equilibrium, the magnitudes of the normal force and weight are equal.

    Then a force \(\overset\rightharpoonup F\) is applied on the box pulling it to the right, over time the magnitude of this applied force is gradually increased. The box will stay at rest for some time. This is because even if the force is increasing, the force of static friction is increasing as well to balance the magnitude with force \(\overset\rightharpoonup F\).

    The force needed to move the box is equal and opposite to the maximum static friction force. The maximum value for the static friction force is shown as \({(f_{\mathrm s})}_\max\) and it is proportional to the magnitude of the normal force. The proportionality factor is shown as \(\mu_{\mathrm s}\) and is called the coefficient of static friction. Once the maximum static friction force is overcome, the box will begin to slide to the right.

    Static Friction: Formula

    The real value of static friction might range from zero (when there is no force exerted on the object) to a maximum value, which is mathematically represented as

    $$f_s\leq{(f_s)}_{max}=\mu_sN.$$

    According to the mathematical representation, the static friction relationship is between magnitudes, as the static friction magnitude is proportional to both the magnitude of the normal force and the roughness between the two surfaces in contact. Therefore, directions do not matter like in vectorial relationships.

    So, what does this formula mean?

    • When the exerted force \(\overset\rightharpoonup F\) is at a value at which the motion starts, the formula can be used to calculate the magnitude of the static friction force.
    • If the force \(\overset\rightharpoonup F\) is not causing the object to move, then the magnitude of static friction force should be less than \(\mu_sN\). In this case, the magnitude of static friction force will simply be equal to the magnitude of the applied force \(\overset\rightharpoonup F\).

    Limiting Friction

    We mentioned that there is a limit where the force \(\overrightarrow F\) is greater than the maximum value of the static friction force. If the limit is surpassed, the box begins to move. When the static friction force is at a maximum and the motion is about to start, the frictional force is called the limiting friction. When motion starts, the object will no longer experience static friction. Instead, the object experiences the force of kinetic friction.

    Limiting friction Static Friction VaiaFig. 3 - Diagram to show how both the forces of static friction and kinetic friction change with an increasing applied force.

    If we look at the above graph we see that with an increasing applied force \(\overset\rightharpoonup F\), the magnitude of the static friction force begins to increase as well until it reaches a peak where the magnitude is that of the limiting friction. Afterwards, the object begins to move, and the static friction force is no longer effective, but the kinetic friction force is.

    Static Friction Examples

    Now let's investigate some examples involving the static friction force.

    Static Friction Relationship A box at rest VaiaFig. 4 - A box at rest. The applied force is not great enough to overcome the force of static friction.

    Questions

    a) A box with a mass of \(4\,\mathrm{kg}\) is at rest on a surface. When a force of \(10\,\mathrm N\) is applied to the box it is still at rest, what is the magnitude of static friction force?

    b) If the value of maximum static friction force is \(20\,\mathrm N\), what is the coefficient of static friction \(\mu_{\mathrm s}\) for a \(10\,\mathrm kg\) box? (\(g=10\,\frac{\mathrm m}{\mathrm s^2}\))

    Solutions

    a) When an object is at rest and a force is applied to it, the magnitude of the force is equal to the magnitude of static friction force. Since a force of \(10\,\mathrm N\) is applied, the magnitude of the static friction force is equal to \(10\,\mathrm N\) as well.

    b) The magnitude of the maximum static friction force is equal to \(\mu_{\mathrm s}N\).

    Since the value of maximum static friction force is \(20\,\mathrm N\), it can be inserted in the place of \({\left(f_s\right)}_\max\). Also, the mass of the object is given. So, we can calculate the weight.

    $$\begin{align*}\mathrm W&=\mathrm{mg},\\\mathrm W&=\left(4\,\mathrm{kg}\right)\left(10\,\mathrm m/\mathrm s^2\right),\\\mathrm W&=40\,\mathrm N.\end{align*}$$

    As the weight and normal force have the same magnitude, we can determine the coefficient of static friction \(\mu_{\mathrm s}\).

    $$\begin{align*}f_{\mathrm s}&=\mu_{\mathrm s}N,\\\mu_{\mathrm s}&=\frac{{\mathrm f}_{\mathrm s}}{\mathrm N},\\\mu_{\mathrm s}&=\frac{20\,\mathrm N}{40\,\mathrm N},\\\mu_{\mathrm s}&=0.5.\end{align*}$$

    Static Friction vs Kinetic Friction

    So, what is the difference between static friction and kinetic friction?

    The differences between the forces of static friction and kinetic friction can be summarised as:

    1. Static friction is only applied while the object is stationary, while kinetic friction force is applied when the object is moving. (A way to remember the key difference between them is to think critically about their definitions. While static means lacking in movement, kinetic means relating to or resulting from motion.)
    2. The maximum value of the static friction force is always greater than the magnitude of the kinetic friction force because it is always easier for an object to maintain motion than it is to begin motion from rest.
    3. The value of the force of kinetic friction across a dry surface is essentially constant, no matter the speed of the object. Whereas the magnitude of static friction increases with the applied force until it reaches the limiting friction.

    Static Friction - Key takeaways

    • The static friction force is applied while the object is at rest.

    • When the exerted force \(\overset\rightharpoonup F\) is at a value at which the motion starts, the formula can be used to calculate the magnitude of static friction force.

    • If the force \(\overset\rightharpoonup F\) is less than this value, then the magnitude of static friction force should be less than \(\mu_{\mathrm s}N\). In this case, the magnitude of static friction force will simply be equal to the magnitude of the force applied \(\overset\rightharpoonup F\).

    • The type of friction where there is the maximum value of static friction force and the motion is about to start is called the limiting friction.

    • The difference between static and kinetic friction force is that the static one is applied while the object is stationary, and the kinetic one is applied while the object is moving. Static means standing, kinetic moving.


    References

    1. Fig. 1 - People pushing a stalled car out of the street (https://www.flickr.com/photos/nathaninsandiego/5421942474) by Nathan Rupert is licensed by CC BY-NC-ND 2.0 (https://creativecommons.org/licenses/by-nc-nd/2.0/).
    2. Fig. 2 - Static Friction being overcome, Vaia Originals.
    3. Fig. 3 - Static Friction, Limiting Friction, Kinetic Friction (https://commons.wikimedia.org/wiki/File:Static_friction.png) adapted from Ilevanat is licensed by GNU (https://www.gnu.org/licenses/fdl-1.3.html).
    4. Fig. 4 - A box at rest, Vaia Originals.
    Frequently Asked Questions about Static Friction

    What is a static force? 

    In the context of friction, a static force is the force that a surface exerts on an object pressed against it. This force is directly opposed to the normal force and is proportional to the normal force.

    What is the equation for finding static friction? 

    The equation for finding static friction is Fs = μs N, where Fs is the static frictional force, μs is the coefficient of static friction, and N is the normal force.

    Test your knowledge with multiple choice flashcards

    Friction is not a contact force.

    A car can brake and stop without the friction force.

    The static friction force is applied while the object is stationary.

    Next
    1
    About Vaia

    Vaia is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

    Learn more
    Vaia Editorial Team

    Team Static Friction Teachers

    • 9 minutes reading time
    • Checked by Vaia Editorial Team
    Save Explanation

    Study anywhere. Anytime.Across all devices.

    Sign-up for free

    Sign up to highlight and take notes. It’s 100% free.

    Join over 22 million students in learning with our Vaia App

    The first learning app that truly has everything you need to ace your exams in one place

    • Flashcards & Quizzes
    • AI Study Assistant
    • Study Planner
    • Mock-Exams
    • Smart Note-Taking
    Join over 22 million students in learning with our Vaia App