StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

Suggested languages for you:

Americas

Europe

Centre of Mass

Bodies have properties such as weight, charge, density, etc. Their weight is related to their mass and how this is affected by a gravitational force. In many cases, to simplify things, mass can be concentrated on a single point, especially when we are dealing with particles or small bodies. However, bodies can also be irregular or large, in which case…

Content verified by subject matter experts

Free StudySmarter App with over 20 million students

Explore our app and discover over 50 million learning materials for free.

Centre of Mass

- Astrophysics
- Absolute Magnitude
- Astronomical Objects
- Astronomical Telescopes
- Black Body Radiation
- Classification by Luminosity
- Classification of Stars
- Cosmology
- Doppler Effect
- Exoplanet Detection
- Hertzsprung-Russell Diagrams
- Hubble's Law
- Large Diameter Telescopes
- Quasars
- Radio Telescopes
- Reflecting Telescopes
- Stellar Spectral Classes
- Telescopes
- Atoms and Radioactivity
- Fission and Fusion
- Medical Tracers
- Nuclear Reactors
- Radiotherapy
- Random Nature of Radioactive Decay
- Thickness Monitoring
- Circular Motion and Gravitation
- Applications of Circular Motion
- Centripetal and Centrifugal Force
- Circular Motion and Free-Body Diagrams
- Fundamental Forces
- Gravitational and Electric Forces
- Gravity on Different Planets
- Inertial and Gravitational Mass
- Vector Fields
- Conservation of Energy and Momentum
- Dynamics
- Application of Newton's Second Law
- Buoyancy
- Drag Force
- Dynamic Systems
- Free Body Diagrams
- Normal Force
- Springs Physics
- Superposition of Forces
- Tension
- Electric Charge Field and Potential
- Charge Distribution
- Charged Particle in Uniform Electric Field
- Conservation of Charge
- Electric Field Between Two Parallel Plates
- Electric Field Lines
- Electric Field of Multiple Point Charges
- Electric Force
- Electric Potential Due to Dipole
- Electric Potential due to a Point Charge
- Electrical Systems
- Equipotential Lines
- Electricity
- Ammeter
- Attraction and Repulsion
- Basics of Electricity
- Batteries
- Capacitors in Series and Parallel
- Circuit Schematic
- Circuit Symbols
- Circuits
- Current Density
- Current-Voltage Characteristics
- DC Circuit
- Electric Current
- Electric Generators
- Electric Motor
- Electrical Power
- Electricity Generation
- Emf and Internal Resistance
- Kirchhoff's Junction Rule
- Kirchhoff's Loop Rule
- National Grid Physics
- Ohm's Law
- Potential Difference
- Power Rating
- RC Circuit
- Resistance
- Resistance and Resistivity
- Resistivity
- Resistors in Series and Parallel
- Series and Parallel Circuits
- Simple Circuit
- Static Electricity
- Superconductivity
- Time Constant of RC Circuit
- Transformer
- Voltage Divider
- Voltmeter
- Electricity and Magnetism
- Benjamin Franklin's Kite Experiment
- Changing Magnetic Field
- Circuit Analysis
- Diamagnetic Levitation
- Electric Dipole
- Electric Field Energy
- Magnets
- Oersted's Experiment
- Voltage
- Electromagnetism
- Electrostatics
- Energy Physics
- Big Energy Issues
- Conservative and Non Conservative Forces
- Efficiency in Physics
- Elastic Potential Energy
- Electrical Energy
- Energy and the Environment
- Forms of Energy
- Geothermal Energy
- Gravitational Potential Energy
- Heat Engines
- Heat Transfer Efficiency
- Kinetic Energy
- Mechanical Power
- Potential Energy
- Potential Energy and Energy Conservation
- Pulling Force
- Renewable Energy Sources
- Wind Energy
- Work Energy Principle
- Engineering Physics
- Angular Momentum
- Angular Work and Power
- Engine Cycles
- First Law of Thermodynamics
- Moment of Inertia
- Non-Flow Processes
- PV Diagrams
- Reversed Heat Engines
- Rotational Kinetic Energy
- Second Law and Engines
- Thermodynamics and Engines
- Torque and Angular Acceleration
- Famous Physicists
- Fields in Physics
- Alternating Currents
- Capacitance
- Capacitor Charge
- Capacitor Discharge
- Coulomb's Law
- Dielectric
- Electric Field Strength
- Electric Fields
- Electric Potential
- Electromagnetic Induction
- Energy Stored by a Capacitor
- Equipotential Surface
- Escape Velocity
- Gravitational Field Strength
- Gravitational Fields
- Gravitational Potential
- Magnetic Fields
- Magnetic Flux Density
- Magnetic Flux and Magnetic Flux Linkage
- Moving Charges in a Magnetic Field
- Newton’s Laws
- Operation of a Transformer
- Parallel Plate Capacitor
- Planetary Orbits
- Synchronous Orbits
- Fluids
- Absolute Pressure and Gauge Pressure
- Application of Bernoulli's Equation
- Archimedes' Principle
- Conservation of Energy in Fluids
- Fluid Flow
- Fluid Systems
- Force and Pressure
- Force
- Conservation of Momentum
- Contact Forces
- Elastic Forces
- Force and Motion
- Gravity
- Impact Forces
- Moment Physics
- Moments Levers and Gears
- Moments and Equilibrium
- Pressure
- Resultant Force
- Safety First
- Time Speed and Distance
- Velocity and Acceleration
- Work Done
- Fundamentals of Physics
- Further Mechanics and Thermal Physics
- Bottle Rocket
- Charles law
- Circular Motion
- Diesel Cycle
- Gas Laws
- Heat Transfer
- Heat Transfer Experiments
- Ideal Gas Model
- Ideal Gases
- Kinetic Theory of Gases
- Models of Gas Behaviour
- Newton's Law of Cooling
- Periodic Motion
- Rankine Cycle
- Resonance
- Simple Harmonic Motion
- Simple Harmonic Motion Energy
- Temperature
- Thermal Equilibrium
- Thermal Expansion
- Thermal Physics
- Volume
- Work in Thermodynamics
- Geometrical and Physical Optics
- Kinematics Physics
- Air Resistance
- Angular Kinematic Equations
- Average Velocity and Acceleration
- Displacement, Time and Average Velocity
- Frame of Reference
- Free Falling Object
- Kinematic Equations
- Motion in One Dimension
- Motion in Two Dimensions
- Rotational Motion
- Uniformly Accelerated Motion
- Linear Momentum
- Magnetism
- Ampere force
- Earth's Magnetic Field
- Fleming's Left Hand Rule
- Induced Potential
- Magnetic Forces and Fields
- Motor Effect
- Particles in Magnetic Fields
- Permanent and Induced Magnetism
- Magnetism and Electromagnetic Induction
- Eddy Current
- Faraday's Law
- Induced Currents
- Inductance
- LC Circuit
- Lenz's Law
- Magnetic Field of a Current-Carrying Wire
- Magnetic Flux
- Magnetic Materials
- Monopole vs Dipole
- RL Circuit
- Measurements
- Mechanics and Materials
- Acceleration Due to Gravity
- Bouncing Ball Example
- Bulk Properties of Solids
- Centre of Mass
- Collisions and Momentum Conservation
- Conservation of Energy
- Density
- Elastic Collisions
- Force Energy
- Friction
- Graphs of Motion
- Linear Motion
- Materials
- Materials Energy
- Moments
- Momentum
- Power and Efficiency
- Projectile Motion
- Scalar and Vector
- Terminal Velocity
- Vector Problems
- Work and Energy
- Young's Modulus
- Medical Physics
- Absorption of X-Rays
- CT Scanners
- Defects of Vision
- Defects of Vision and Their Correction
- Diagnostic X-Rays
- Effective Half Life
- Electrocardiography
- Fibre Optics and Endoscopy
- Gamma Camera
- Hearing Defects
- High Energy X-Rays
- Lenses
- Magnetic Resonance Imaging
- Noise Sensitivity
- Non Ionising Imaging
- Physics of Vision
- Physics of the Ear
- Physics of the Eye
- Radioactive Implants
- Radionuclide Imaging Techniques
- Radionuclide Imaging and Therapy
- Structure of the Ear
- Ultrasound Imaging
- X-Ray Image Processing
- X-Ray Imaging
- Modern Physics
- Bohr Model of the Atom
- Disintegration Energy
- Franck Hertz Experiment
- Mass Energy Equivalence
- Nuclear Reaction
- Nucleus Structure
- Quantization of Energy
- Spectral Lines
- The Discovery of the Atom
- Wave Function
- Nuclear Physics
- Alpha Beta and Gamma Radiation
- Binding Energy
- Half Life
- Induced Fission
- Mass and Energy
- Nuclear Instability
- Nuclear Radius
- Radioactive Decay
- Radioactivity
- Rutherford Scattering
- Safety of Nuclear Reactors
- Oscillations
- Energy Time Graph
- Energy in Simple Harmonic Motion
- Hooke's Law
- Kinetic Energy in Simple Harmonic Motion
- Mechanical Energy in Simple Harmonic Motion
- Pendulum
- Period of Pendulum
- Period, Frequency and Amplitude
- Phase Angle
- Physical Pendulum
- Restoring Force
- Simple Pendulum
- Spring-Block Oscillator
- Torsional Pendulum
- Velocity
- Particle Model of Matter
- Physical Quantities and Units
- Converting Units
- Physical Quantities
- SI Prefixes
- Standard Form Physics
- Units Physics
- Use of SI Units
- Physics of Motion
- Acceleration
- Angular Acceleration
- Angular Displacement
- Angular Velocity
- Centrifugal Force
- Centripetal Force
- Displacement
- Equilibrium
- Forces of Nature Physics
- Galileo's Leaning Tower of Pisa Experiment
- Inclined Plane
- Inertia
- Mass in Physics
- Speed Physics
- Static Equilibrium
- Radiation
- Antiparticles
- Antiquark
- Atomic Model
- Classification of Particles
- Collisions of Electrons with Atoms
- Conservation Laws
- Electromagnetic Radiation and Quantum Phenomena
- Isotopes
- Neutron Number
- Particles
- Photons
- Protons
- Quark Physics
- Specific Charge
- The Photoelectric Effect
- Wave-Particle Duality
- Rotational Dynamics
- Angular Impulse
- Angular Kinematics
- Angular Motion and Linear Motion
- Connecting Linear and Rotational Motion
- Orbital Trajectory
- Rotational Equilibrium
- Rotational Inertia
- Satellite Orbits
- Third Law of Kepler
- Scientific Method Physics
- Data Collection
- Data Representation
- Drawing Conclusions
- Equations in Physics
- Uncertainties and Evaluations
- Space Physics
- Thermodynamics
- Heat Radiation
- Thermal Conductivity
- Thermal Efficiency
- Thermodynamic Diagram
- Thermodynamic Force
- Thermodynamic and Kinetic Control
- Torque and Rotational Motion
- Centripetal Acceleration and Centripetal Force
- Conservation of Angular Momentum
- Force and Torque
- Muscle Torque
- Newton's Second Law in Angular Form
- Simple Machines
- Unbalanced Torque
- Translational Dynamics
- Centripetal Force and Velocity
- Critical Speed
- Free Fall and Terminal Velocity
- Gravitational Acceleration
- Kinetic Friction
- Object in Equilibrium
- Orbital Period
- Resistive Force
- Spring Force
- Static Friction
- Turning Points in Physics
- Cathode Rays
- Discovery of the Electron
- Einstein's Theory of Special Relativity
- Electromagnetic Waves
- Electron Microscopes
- Electron Specific Charge
- Length Contraction
- Michelson-Morley Experiment
- Millikan's Experiment
- Newton's and Huygens' Theories of Light
- Photoelectricity
- Relativistic Mass and Energy
- Special Relativity
- Thermionic Electron Emission
- Time Dilation
- Wave Particle Duality of Light
- Waves Physics
- Acoustics
- Applications of Ultrasound
- Applications of Waves
- Diffraction
- Diffraction Gratings
- Doppler Effect in Light
- Earthquake Shock Waves
- Echolocation
- Image Formation by Lenses
- Interference
- Light
- Longitudinal Wave
- Longitudinal and Transverse Waves
- Mirror
- Oscilloscope
- Phase Difference
- Polarisation
- Progressive Waves
- Properties of Waves
- Ray Diagrams
- Ray Tracing Mirrors
- Reflection
- Refraction
- Refraction at a Plane Surface
- Resonance in Sound Waves
- Seismic Waves
- Snell's law
- Spectral Colour
- Standing Waves
- Stationary Waves
- Total Internal Reflection in Optical Fibre
- Transverse Wave
- Ultrasound
- Wave Characteristics
- Wave Speed
- Waves in Communication
- X-rays
- Work Energy and Power
- Conservative Forces and Potential Energy
- Dissipative Force
- Energy Dissipation
- Energy in Pendulum
- Force and Potential Energy
- Force vs. Position Graph
- Orbiting Objects
- Potential Energy Graphs and Motion
- Spring Potential Energy
- Total Mechanical Energy
- Translational Kinetic Energy
- Work Energy Theorem
- Work and Kinetic Energy

Save the explanation now and read when you’ve got time to spare.

SaveLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmeldenNie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmeldenBodies have properties such as weight, charge, density, etc. Their weight is related to their mass and how this is affected by a gravitational force. In many cases, to simplify things, mass can be concentrated on a single point, especially when we are dealing with particles or small bodies. However, bodies can also be irregular or large, in which case we might need another means of simplification. It is here that the concept known as the **centre of mass** can be helpful.

The centre of mass is the place where all the body’s mass is assumed to be concentrated. The concept of the centre of mass simplifies problems in two principal ways:

- It provides a reference point for studying
**body-force interactions**. - It simplifies the objects’ trajectories by representing their movement with the help of the centre of mass trajectory.

When using the centre of mass to study body-force interactions, the forces do not act at the contact point but rather on the centre of mass.

By concentrating all forces in the centre of mass, the laws of Newton and force superposition can be used to find the net force, the acceleration, and other variables.

If the forces acting on an object cause movement, this can be simplified to its centre of mass moving. In these cases, the centre of mass can be analysed using Newton’s laws on the centre of mass or the kinematic equations to obtain its displacement, velocity, and acceleration.

Some centres of mass can be determined more easily than others, depending on the object’s density, shape, and thickness. See the following example:

Let’s say you want to obtain the centre of mass of a regular and symmetrical body, such as a square. If you have ever played with a square piece of metal or wood, you know that you can balance it on your finger by placing it at the centre of the square.

The balancing is possible because the square has a uniform density, which means that its weight is the same at every point. The force pulling it down (gravity) is also equal in all places.

The centre of mass for regular objects, such as a square, a rectangle, a circle, or an equilateral triangle, is at the centre of the geometrical shape, as shown below:

For many regular figures, their centre of mass overlaps with a geometrical point known as their **centroid**.

The centroid is the centre of a geometrical shape.

When an object’s density and shape are regular, the centre of mass is found at its geometrical centre or centroid, which is found in any regular 2D or 3D objects, such as spheres, cubes, and rings.

The centre of mass can be defined for a system consisting of several particles, such as when you analyse charges or point masses. If the objects have a regular density, the centre of mass can be found by using the following formula:

\[CM = \frac{m_1\vec{r_1} +m_2\vec{r_2} +m_3\vec{r_3}}{m_1+m_2+m_3}\]

Here, the vectors r are the coordinates x, y, and z measured from the origin. This is broken down in three formulas for the x, y, and z positions as follows:

\[CM_x = \frac{m_1x +m_2x +m_3x}{m_1+m_2+m_3}\]

\[CM_y = \frac{m_1y +m_2y +m_3y}{m_1+m_2+m_3}\]

\[CM_z = \frac{m_1z +m_2z +m_3z}{m_1+m_2+m_3}\]

Let’s look at an example to see how this works.

A system of three particles has the configuration shown in the image below. The particles are connected by forces that keep them locked in a triangular position. Another force makes all of them move along the y-axis.

Determine the centre of mass that can be used to simplify their movement if their individual masses are m_{1} =100 gr, m_{2}=50 gr, and m_{3}=64 gr.

First, you need to obtain the coordinate of each particle in the system. In this case, the particles lie along the position y=0. The problem will be simplified to find the coordinates in x and z.

\[CM_x = \frac{m_1x +m_2x +m_3x}{m_1+m_2+m_3} = \frac{(100 \cdot 3) + (50 \cdot 2.5) + (64 \cdot 1.6)}{100+50+64} = 2.46 \approx 2.5\]

\[CM_z = \frac{m_1z +m_2z +m_3z}{m_1+m_2+m_3} = \frac{(100 \cdot 2.3) + (50 \cdot 3.5) + (64 \cdot 2.7)}{100+50+64} = 2.7\]

You can then simplify the movement of the three particles as a single point in motion along the z and x-axes with the coordinates given below.

\[CM_{x,z} = (2.5, 2.7)\]

If the system consists of symmetrical objects with a uniform density, such as circles, squares, or rings, the coordinates of their centre of mass are provided by their centroids. Having obtained the centroid coordinates (x, y), these can be used to obtain the centre of mass of the whole system.

The **centre of gravity **is a useful concept, which helps us to simplify analyses of the forces acting on a single body or a system consisting of different bodies connected either physically or by a force.

The centre of gravity is the geometrical place where the force of gravity acts in a body or a system of bodies.

All physical objects have mass. If the mass is uniform, we can easily simplify the system of forces when we analyse a body in motion. In these cases, the whole mass can be placed in the centre of gravity, as the force of gravity acts on this point.

The centre of gravity also applies to bodies in rotation. In some of these cases, however, forces are not applied at the centre of mass but can cause **torque** and **induce rotation**. A classic example of the centre of mass in a body in rotation with regular density is a sphere.

A billiard ball is impacted exactly in the middle with force ‘F’. The ball can be considered a sphere with a regular density, and its centroid and centre of mass overlap. The ball is also affected by the force of gravity, which pulls it downwards. A third interaction that happens is ‘**friction**’.

The force of friction ‘f’ acts parallel to the contact surface and against the movement of the ball. This force acts at a distance ‘d’ from the centre of the ball, causing a torque.

The torque caused by the friction is responsible for the ball’s rotation.

The centre of gravity and the centre of mass should not be confused. One depends on the mass distribution of a body, while the other depends on the force of gravity that acts on the body. Both might overlap in special cases, such as when the mass of the object is regular and the gravitational field uniform. See the following example.

A bar with a length of 10 kilometres extends vertically over the earth’s surface. Its shape is cylindrical with a thickness A. The wind does not blow, and there is no other force other than gravity.

In this case, the centre of mass is exactly in the middle of the bar, as the density is regular. However, the centre of gravity is not. Let’s remember the formula for the force of gravity on the surface of the earth.

\[F = G \cdot \frac{M_{Earth} \cdot m_{cylinder}}{r^2}\]

Here, G is the earth’s gravity constant, which is 9.81 m/s^{2}, r is the distance of the earth’s centre of mass from each part of the cylinder, which is measured in metres. M_{Earth} and m_{cylinder} are the mass of the objects (earth and each part of the cylinder), measured in kilograms.

The force decreases as we move further away from the earth’s surface. If you divide the bar into small cylinders with a 10cm height and a mass of 1kg, the last cylinders of that long bar feel less gravitational force than the ones on the surface if all values are the same, but only r is different.

This means that the top of the bar weighs less, and its centre of gravity moves downwards.

Some basic differences between the centre of mass and the centre of gravity are listed below.

Centre of mass | Centre of gravity |

Useful for analysing the movement of an object. | Useful for analysing the stability of an object subjected to gravitational forces. |

Depends on the object’s mass. | Depends on gravity. |

Can coincide with the centroid in symmetrical objects with regular density. | May not coincide with the centroid in symmetrical objects with regular density because it depends on the position with respect to the field of gravity. |

During a projectile launch in parabolic motion, the **centre of mass remains stable**, even if the object rotates while travelling. In this case, the object rotates around its centre of mass, describing a parabola, as shown below.

In the case of the launch of a rocket or a projectile, if the object separates into two parts, the motion of the centre of mass follows the original trajectory, while the parts of the projectile follow different paths, as shown below.

- The centre of mass is the place where we can assume all mass to be concentrated in a body.
- The centre of mass is useful for simplifying the forces acting on a body or its motion.
- The centroid is the geometrical centre of an object.
- The centre of mass and the centroid coincide for bodies with regular symmetry and uniform density.
- The centre of gravity is the geometrical place where we can assume the force of gravity to be acting on a body.
- The centre of gravity and the centre of mass are not the same. One distinguishing feature is that the centre of gravity depends on the force of gravity, whereas the centre of mass does not.

The centre of mass is the place where all the mass is assumed to be concentrated.

More about Centre of Mass

How would you like to learn this content?

Creating flashcards

Studying with content from your peer

Taking a short quiz

How would you like to learn this content?

Creating flashcards

Studying with content from your peer

Taking a short quiz

Free physics cheat sheet!

Everything you need to know on . A perfect summary so you can easily remember everything.

Be perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.

Save explanations to your personalised space and access them anytime, anywhere!

Sign up with Email Sign up with AppleBy signing up, you agree to the Terms and Conditions and the Privacy Policy of StudySmarter.

Already have an account? Log in