StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

Suggested languages for you:

Americas

Europe

Alternating Currents

An alternating current (AC) is a current that periodically varies its magnitude over time in a sinusoidal waveform. The main characteristic of alternating current is the alternating magnitude between positive and negative values. Modern power generating stations produce electricity in the form of alternating currents. Alternating current is distributed in residential and commercial areas, and it is the main form of electrical power…

Content verified by subject matter experts

Free StudySmarter App with over 20 million students

Explore our app and discover over 50 million learning materials for free.

Alternating Currents

- Astrophysics
- Absolute Magnitude
- Astronomical Objects
- Astronomical Telescopes
- Black Body Radiation
- Classification by Luminosity
- Classification of Stars
- Cosmology
- Doppler Effect
- Exoplanet Detection
- Hertzsprung-Russell Diagrams
- Hubble's Law
- Large Diameter Telescopes
- Quasars
- Radio Telescopes
- Reflecting Telescopes
- Stellar Spectral Classes
- Telescopes
- Atoms and Radioactivity
- Fission and Fusion
- Medical Tracers
- Nuclear Reactors
- Radiotherapy
- Random Nature of Radioactive Decay
- Thickness Monitoring
- Circular Motion and Gravitation
- Applications of Circular Motion
- Centripetal and Centrifugal Force
- Circular Motion and Free-Body Diagrams
- Fundamental Forces
- Gravitational and Electric Forces
- Gravity on Different Planets
- Inertial and Gravitational Mass
- Vector Fields
- Conservation of Energy and Momentum
- Dynamics
- Application of Newton's Second Law
- Buoyancy
- Drag Force
- Dynamic Systems
- Free Body Diagrams
- Normal Force
- Springs Physics
- Superposition of Forces
- Tension
- Electric Charge Field and Potential
- Charge Distribution
- Charged Particle in Uniform Electric Field
- Conservation of Charge
- Electric Field Between Two Parallel Plates
- Electric Field Lines
- Electric Field of Multiple Point Charges
- Electric Force
- Electric Potential Due to Dipole
- Electric Potential due to a Point Charge
- Electrical Systems
- Equipotential Lines
- Electricity
- Ammeter
- Attraction and Repulsion
- Basics of Electricity
- Batteries
- Capacitors in Series and Parallel
- Circuit Schematic
- Circuit Symbols
- Circuits
- Current Density
- Current-Voltage Characteristics
- DC Circuit
- Electric Current
- Electric Generators
- Electric Motor
- Electrical Power
- Electricity Generation
- Emf and Internal Resistance
- Kirchhoff's Junction Rule
- Kirchhoff's Loop Rule
- National Grid Physics
- Ohm's Law
- Potential Difference
- Power Rating
- RC Circuit
- Resistance
- Resistance and Resistivity
- Resistivity
- Resistors in Series and Parallel
- Series and Parallel Circuits
- Simple Circuit
- Static Electricity
- Superconductivity
- Time Constant of RC Circuit
- Transformer
- Voltage Divider
- Voltmeter
- Electricity and Magnetism
- Benjamin Franklin's Kite Experiment
- Changing Magnetic Field
- Circuit Analysis
- Diamagnetic Levitation
- Electric Dipole
- Electric Field Energy
- Magnets
- Oersted's Experiment
- Voltage
- Electromagnetism
- Electrostatics
- Energy Physics
- Big Energy Issues
- Conservative and Non Conservative Forces
- Efficiency in Physics
- Elastic Potential Energy
- Electrical Energy
- Energy and the Environment
- Forms of Energy
- Geothermal Energy
- Gravitational Potential Energy
- Heat Engines
- Heat Transfer Efficiency
- Kinetic Energy
- Mechanical Power
- Potential Energy
- Potential Energy and Energy Conservation
- Pulling Force
- Renewable Energy Sources
- Wind Energy
- Work Energy Principle
- Engineering Physics
- Angular Momentum
- Angular Work and Power
- Engine Cycles
- First Law of Thermodynamics
- Moment of Inertia
- Non-Flow Processes
- PV Diagrams
- Reversed Heat Engines
- Rotational Kinetic Energy
- Second Law and Engines
- Thermodynamics and Engines
- Torque and Angular Acceleration
- Famous Physicists
- Fields in Physics
- Alternating Currents
- Capacitance
- Capacitor Charge
- Capacitor Discharge
- Coulomb's Law
- Dielectric
- Electric Field Strength
- Electric Fields
- Electric Potential
- Electromagnetic Induction
- Energy Stored by a Capacitor
- Equipotential Surface
- Escape Velocity
- Gravitational Field Strength
- Gravitational Fields
- Gravitational Potential
- Magnetic Fields
- Magnetic Flux Density
- Magnetic Flux and Magnetic Flux Linkage
- Moving Charges in a Magnetic Field
- Newton’s Laws
- Operation of a Transformer
- Parallel Plate Capacitor
- Planetary Orbits
- Synchronous Orbits
- Fluids
- Absolute Pressure and Gauge Pressure
- Application of Bernoulli's Equation
- Archimedes' Principle
- Conservation of Energy in Fluids
- Fluid Flow
- Fluid Systems
- Force and Pressure
- Force
- Conservation of Momentum
- Contact Forces
- Elastic Forces
- Force and Motion
- Gravity
- Impact Forces
- Moment Physics
- Moments Levers and Gears
- Moments and Equilibrium
- Pressure
- Resultant Force
- Safety First
- Time Speed and Distance
- Velocity and Acceleration
- Work Done
- Fundamentals of Physics
- Further Mechanics and Thermal Physics
- Bottle Rocket
- Charles law
- Circular Motion
- Diesel Cycle
- Gas Laws
- Heat Transfer
- Heat Transfer Experiments
- Ideal Gas Model
- Ideal Gases
- Kinetic Theory of Gases
- Models of Gas Behaviour
- Newton's Law of Cooling
- Periodic Motion
- Rankine Cycle
- Resonance
- Simple Harmonic Motion
- Simple Harmonic Motion Energy
- Temperature
- Thermal Equilibrium
- Thermal Expansion
- Thermal Physics
- Volume
- Work in Thermodynamics
- Geometrical and Physical Optics
- Kinematics Physics
- Air Resistance
- Angular Kinematic Equations
- Average Velocity and Acceleration
- Displacement, Time and Average Velocity
- Frame of Reference
- Free Falling Object
- Kinematic Equations
- Motion in One Dimension
- Motion in Two Dimensions
- Rotational Motion
- Uniformly Accelerated Motion
- Linear Momentum
- Magnetism
- Ampere force
- Earth's Magnetic Field
- Fleming's Left Hand Rule
- Induced Potential
- Magnetic Forces and Fields
- Motor Effect
- Particles in Magnetic Fields
- Permanent and Induced Magnetism
- Magnetism and Electromagnetic Induction
- Eddy Current
- Faraday's Law
- Induced Currents
- Inductance
- LC Circuit
- Lenz's Law
- Magnetic Field of a Current-Carrying Wire
- Magnetic Flux
- Magnetic Materials
- Monopole vs Dipole
- RL Circuit
- Measurements
- Mechanics and Materials
- Acceleration Due to Gravity
- Bouncing Ball Example
- Bulk Properties of Solids
- Centre of Mass
- Collisions and Momentum Conservation
- Conservation of Energy
- Density
- Elastic Collisions
- Force Energy
- Friction
- Graphs of Motion
- Linear Motion
- Materials
- Materials Energy
- Moments
- Momentum
- Power and Efficiency
- Projectile Motion
- Scalar and Vector
- Terminal Velocity
- Vector Problems
- Work and Energy
- Young's Modulus
- Medical Physics
- Absorption of X-Rays
- CT Scanners
- Defects of Vision
- Defects of Vision and Their Correction
- Diagnostic X-Rays
- Effective Half Life
- Electrocardiography
- Fibre Optics and Endoscopy
- Gamma Camera
- Hearing Defects
- High Energy X-Rays
- Lenses
- Magnetic Resonance Imaging
- Noise Sensitivity
- Non Ionising Imaging
- Physics of Vision
- Physics of the Ear
- Physics of the Eye
- Radioactive Implants
- Radionuclide Imaging Techniques
- Radionuclide Imaging and Therapy
- Structure of the Ear
- Ultrasound Imaging
- X-Ray Image Processing
- X-Ray Imaging
- Modern Physics
- Bohr Model of the Atom
- Disintegration Energy
- Franck Hertz Experiment
- Mass Energy Equivalence
- Nuclear Reaction
- Nucleus Structure
- Quantization of Energy
- Spectral Lines
- The Discovery of the Atom
- Wave Function
- Nuclear Physics
- Alpha Beta and Gamma Radiation
- Binding Energy
- Half Life
- Induced Fission
- Mass and Energy
- Nuclear Instability
- Nuclear Radius
- Radioactive Decay
- Radioactivity
- Rutherford Scattering
- Safety of Nuclear Reactors
- Oscillations
- Energy Time Graph
- Energy in Simple Harmonic Motion
- Hooke's Law
- Kinetic Energy in Simple Harmonic Motion
- Mechanical Energy in Simple Harmonic Motion
- Pendulum
- Period of Pendulum
- Period, Frequency and Amplitude
- Phase Angle
- Physical Pendulum
- Restoring Force
- Simple Pendulum
- Spring-Block Oscillator
- Torsional Pendulum
- Velocity
- Particle Model of Matter
- Physical Quantities and Units
- Converting Units
- Physical Quantities
- SI Prefixes
- Standard Form Physics
- Units Physics
- Use of SI Units
- Physics of Motion
- Acceleration
- Angular Acceleration
- Angular Displacement
- Angular Velocity
- Centrifugal Force
- Centripetal Force
- Displacement
- Equilibrium
- Forces of Nature Physics
- Galileo's Leaning Tower of Pisa Experiment
- Inclined Plane
- Inertia
- Mass in Physics
- Speed Physics
- Static Equilibrium
- Radiation
- Antiparticles
- Antiquark
- Atomic Model
- Classification of Particles
- Collisions of Electrons with Atoms
- Conservation Laws
- Electromagnetic Radiation and Quantum Phenomena
- Isotopes
- Neutron Number
- Particles
- Photons
- Protons
- Quark Physics
- Specific Charge
- The Photoelectric Effect
- Wave-Particle Duality
- Rotational Dynamics
- Angular Impulse
- Angular Kinematics
- Angular Motion and Linear Motion
- Connecting Linear and Rotational Motion
- Orbital Trajectory
- Rotational Equilibrium
- Rotational Inertia
- Satellite Orbits
- Third Law of Kepler
- Scientific Method Physics
- Data Collection
- Data Representation
- Drawing Conclusions
- Equations in Physics
- Uncertainties and Evaluations
- Space Physics
- Thermodynamics
- Heat Radiation
- Thermal Conductivity
- Thermal Efficiency
- Thermodynamic Diagram
- Thermodynamic Force
- Thermodynamic and Kinetic Control
- Torque and Rotational Motion
- Centripetal Acceleration and Centripetal Force
- Conservation of Angular Momentum
- Force and Torque
- Muscle Torque
- Newton's Second Law in Angular Form
- Simple Machines
- Unbalanced Torque
- Translational Dynamics
- Centripetal Force and Velocity
- Critical Speed
- Free Fall and Terminal Velocity
- Gravitational Acceleration
- Kinetic Friction
- Object in Equilibrium
- Orbital Period
- Resistive Force
- Spring Force
- Static Friction
- Turning Points in Physics
- Cathode Rays
- Discovery of the Electron
- Einstein's Theory of Special Relativity
- Electromagnetic Waves
- Electron Microscopes
- Electron Specific Charge
- Length Contraction
- Michelson-Morley Experiment
- Millikan's Experiment
- Newton's and Huygens' Theories of Light
- Photoelectricity
- Relativistic Mass and Energy
- Special Relativity
- Thermionic Electron Emission
- Time Dilation
- Wave Particle Duality of Light
- Waves Physics
- Acoustics
- Applications of Ultrasound
- Applications of Waves
- Diffraction
- Diffraction Gratings
- Doppler Effect in Light
- Earthquake Shock Waves
- Echolocation
- Image Formation by Lenses
- Interference
- Light
- Longitudinal Wave
- Longitudinal and Transverse Waves
- Mirror
- Oscilloscope
- Phase Difference
- Polarisation
- Progressive Waves
- Properties of Waves
- Ray Diagrams
- Ray Tracing Mirrors
- Reflection
- Refraction
- Refraction at a Plane Surface
- Resonance in Sound Waves
- Seismic Waves
- Snell's law
- Spectral Colour
- Standing Waves
- Stationary Waves
- Total Internal Reflection in Optical Fibre
- Transverse Wave
- Ultrasound
- Wave Characteristics
- Wave Speed
- Waves in Communication
- X-rays
- Work Energy and Power
- Conservative Forces and Potential Energy
- Dissipative Force
- Energy Dissipation
- Energy in Pendulum
- Force and Potential Energy
- Force vs. Position Graph
- Orbiting Objects
- Potential Energy Graphs and Motion
- Spring Potential Energy
- Total Mechanical Energy
- Translational Kinetic Energy
- Work Energy Theorem
- Work and Kinetic Energy

Save the explanation now and read when you’ve got time to spare.

SaveLerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmeldenNie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmeldenAn alternating current (AC) is a current that **periodically varies its magnitude** over time in a sinusoidal waveform. The main characteristic of alternating current is the alternating magnitude between positive and negative values.

Modern power generating stations produce electricity in the form of alternating currents. Alternating current is distributed in residential and commercial areas, and it is the main form of electrical power we use in all our electrical appliances.

Alternating currents are produced by an** AC generator,** which consists of a wire that rotates in a magnetic field created by magnets. As the wire rotates in the magnetic field, it cuts through the magnetic flux lines. The changing magnetic flux through the wire generates a force (electromotive force) that drives the electric charges around the wire. The circulating conducting wire creates an **oscillating electric current flowing in two directions** depending on the varying polarity of the magnet.

Check out our explanation on Emf and Internal Resistance for more info on the electromotive force.

Because alternating currents move periodically and sinusoidally, their motion can be represented by the **sine graph**. The alternating current graph (which you can see below) expresses the relation between voltage and time.

The AC alternates its intensity with respect to time, alternating between **positive and negative values**. This means that when alternating current flows through a circuit, the current will flow through the components in both directions. An AC will reach maximum and minimum values in terms of magnitude and will then oscillate between them (±I_{max}), repeating this cycle every time period T.

A graph illustrating the motion of **direct current (DC)** is shown below. The direct current has a **constant magnitude over time** (in other words, it is not oscillating).

In the graph, you can see the alternating current in green (sine graph) and the direct current in red (line graph).

We can express AC mathematically as a **sine wave equation**, as shown below. I_{max }is the maximum value of current in amperes (A), I is the current at any given time, ω is the supply angular frequency in radians per second (rad/s), and t is time in seconds (s).

\[I = I_{max} \cdot \sin(\omega t)\]

Similarly, we can use the same equation to **express voltage over time**, where V is the voltage at any given time in volts (V), and V_{max} is the maximum voltage.

\[V = V_{max} \cdot \sin(\omega t)\]

The **period** can also be expressed in terms of frequency or angular velocity when convenient. Here, f is the frequency in Herz (Hz), and \(\omega\) is the angular velocity (rad/s).

\[T = \frac{1}{f} = \frac{2 \pi }{\omega}\]

The oscillating period between negative and positive is around 50-60Hz depending on the country. In the UK specifically, the AC has a frequency of 50Hz.

There are many differences between alternating current and direct current. Alternating current oscillates in two directions, whereas direct current has a constant magnitude over time. This is due to the mechanism that generates AC, which is a **rotating coil between two magnets**.

In AC, as the coil rotates, the direction of the electrons flowing through the coil changes depending on its position with respect to the poles. This is due to the **slip rings** connected to the coil. However, in the production of DC, **split rings** connected to the coil change the contacts between the coil and the circuit wires, which results in the current flowing in one direction only.

Furthermore, the **frequency of DC is zero**, whereas the frequency for AC supplied to our homes is between 50 and 60Hz. Also, since the current alternates directions in AC, it is described by a sinusoidal motion (hence the voltage varies). In DC, the voltage and current are both constant.

The table below lists the major differences between alternating current and direct current.

Alternating Current (AC) | Direct Current (DC) |

Oscillates in two directions. Has positive and negative magnitudes. | Magnitude is constant over time. |

Has a peak value of current. | The current is constant over time. |

Electrons in the carrying wire move in two directions. | The continuous flow of electrons is in one direction. |

The current-time graph is sinusoidal. | The current-time graph is linear with a constant value. |

Can be transmitted over long distances. | Cannot be transmitted over long distances. |

AC generators use slip rings and brushes. | DC generators use a split-ring commutator. |

Alternating current is used to power some electrical motors, for example, **AC induction motors.** AC is also used to transmit electrical energy from power generation stations to urban areas for commercial and personal use and other industrial use facilities.

Direct current is used mainly in **low-voltage applications**, such as different battery cells found in smartphone batteries, laptop batteries, or car batteries. DC is also used in solar panels, where the DC is then converted into AC for daily usage.

Root mean square (RMS) voltage and root mean square current **compare alternating currents to direct currents**. We use RMS values for AC, which is the equivalent of the DC value that produces the same amount of work. Multimeters, alternating current voltmeters, and ammeters give a reading of the RMS values of the AC values. Below are the equations to find RMS current and RMS voltage:

\[I_{RMS} = \frac{I_{max}}{\sqrt{2}}; \space V_{RMS} = \frac{V_{max}}{\sqrt{2}}\]

The graph below represents a voltage-time AC graph (in this case, the symbol V is represented by u, but you must always use V for voltage!). The number 3 represents the RMS voltage.

Alternating current occurs in many household appliances like fans, internet routers, and motors. This is why it's important to be able to get to grips with the key quantities and calculations involved with alternating currents.

Find the AC RMS values of a current that produces a maximum voltage of 250V and a maximum current of 5A.

**Solution**

We use the equations given for AC RMS values and plug in the maximum voltage and current values.

\[\begin{align} I_{RMS} = \frac{I_{max}}{\sqrt{2}} = \frac{5A}{\sqrt{2}} = 3.54 A \\ \space V_{RMS} = \frac{V_{max}}{\sqrt{2}} = \frac{250 V}{\sqrt{2}} = 176.8 V \end{align}\]

Find the AC maximum voltage and current value based on the AC RMS values of 150V and 2.15A.

**Solution**

We use the equations given for AC RMS values, rearrange solving for I_{max} and V_{max}, and plug in the RMS voltage and current values.

\[I_{RMS} = \frac{I_{max}}{\sqrt{2}} \Rightarrow I_{max} = I_{RMS} \cdot \sqrt 2 = 2.15 A \cdot \sqrt 2 = 3.04 A\]

\[V_{RMS} = \frac{V_{max}}{\sqrt 2} \Rightarrow V_{max} = V_{RMS} \cdot \sqrt 2 = 150 V\sqrt 2 = 212.1 V \]

Alternating current (AC) is an oscillating current flowing in two directions with an alternating magnitude.

Alternating current is distributed in residential and commercial areas, and it is the main form of electrical power we use in all our electrical appliances.

Alternating currents are produced by an AC generator, which consists of a wire that rotates in a magnetic field created by magnets.

Alternating currents move periodically and sinusoidally, so the sine graph can represent their motion.

There are many differences between alternating current and direct current (DC). AC oscillates in two directions, whereas DC has a constant magnitude over time.

Root mean square (RMS) voltage and root mean square current compare alternating currents to direct currents.

Alternating current (AC) is a current flow that periodically varies its magnitude over time.

More about Alternating Currents

How would you like to learn this content?

Creating flashcards

Studying with content from your peer

Taking a short quiz

How would you like to learn this content?

Creating flashcards

Studying with content from your peer

Taking a short quiz

Free physics cheat sheet!

Everything you need to know on . A perfect summary so you can easily remember everything.

Be perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.

Save explanations to your personalised space and access them anytime, anywhere!

Sign up with Email Sign up with AppleBy signing up, you agree to the Terms and Conditions and the Privacy Policy of StudySmarter.

Already have an account? Log in